Tetrahedron Letters, Vol.24, No.27, pp 2779-2780, 1983 0040-4039/83 \$3.00 + .00 Printed in Great Britain ©1983 Pergamon Press Ltd.

a new synthetic method for 1-o-acyl- β -d-glucopyranoses using tri-o-trifluoroacetyl-1,6-anhydroglucose. Synthesis of tuliposide-a.

Kimihiro Yoshimoto, Miyuki Taru, and Yoshisuke Tsuda*

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan

Summary: Tri-O-trifluoroacetyl-1,6-anhydroglucose 1 was proved to be an useful precursor of 1β -O-acylglucoses. Treatment of 1 with TiBr₄ in boiling CF₃COOH afforded 2,3,4,6-tetra-O-trifluoroacetyl- α -D-glucopyranosyl bromide, which on reaction with a silver carboxylate in benzene gave the 1β -O-acyl derivative. The TFA group was removed either by contact the compound with methanol or by alumina chromatography yielding 1β -O-acyl-D-glucopyranose. By this method tuliposide-A, 1-O-(γ -hydroxy- α -methylenebutyroyl)- β -D-glucopyranose, was synthesized.

Synthesis of 1-O-acyl- β -D-glucoses carrying unsaturation at the acyl moiety such as tuliposide-A (4b)¹⁾ by usual methods is difficult because they are sensitive both to solvolysis and hydrogenation which are general procedures for removal of protecting groups. This communication describes a new synthetic method applicable to those vulnerable 1β -O-acylglucoses with use of tri-O-tri-fluoroacetyl-1,6-anhydro-D-glucose.

It is believed that trifluoroacetyl (TFA) group has little synthetic value for protecting hydroxyl groups, since O-TFA group is so weak to be readily solvolysed. However, this disadvantage of TFA group may be avoided by performing all synthetic procedures in non-solvolytic conditions, when its instability turned to an advantage as a protecting group since it can be removed under very mild conditions at the final stage of synthesis.

Tri-O-TFA-1,6-anhydroglucose 1 was prepared by trifluoroacetylation of 1,6anhydroglucose with $(CF_3CO)_2O$ and CF_3COONa as colorless needles, mp 62-64°C. This compound resisted to opening of 1,6-anhydro ring by TiBr₄ in CHCl₃, whereas tri-O-acetyl-1,6-anhydroglucose readily undergo the ring opening, on a similar treatment, to yield 2,3,4-tri-O-acetyl- α -D-glucopyranosyl bromide.²⁾ There are several precedents of such stabilization of Cl-O6 linkage by an electronegative substituent at C-2.³⁾ This problem was solved by use of trifluoroacetic acid as a solvent. Thus, treatment of 1 with TiBr₄ in boiling trifluoroacetic acid (5 h) opened the 1,6-anhydro ring to furnish 2,3,4,6-tetra-O-TFA- α -D-glucopyranosyl bromide 2 (gum) in 69% yield. Evidently, attack of TFA cation formed from TiBr₄ and trifluoroacetic acid on O-6 caused irreversible cleavage of Cl-O6 linkage by trifluoroacetylation with accompanied introduction of Br⁻ at C-1.

The structure of 2 was supported by the spectral data; IR: 1800, 890, 872. ¹H-NMR(CDCl₂): δ 6.67(1H, d, J=4.1 Hz, C₁-H), 5.91(1H, t, J=9.7 Hz, C₃-H), 5.41 (1H, t, J=9.5 Hz, C₄-H), 5.13(1H, dd, J=4.1 and 9.7 Hz, C₂-H), 4.49-4.68(3H, C 5, 6-H).

Treatment of 2 with silver butyrate in dry benzene for 4 days at room temp. gave 1-O-butyroy1-2,3,4,6-tetra-O-TFA-β-D-glucopyranose 3a, mp 98-99°C (96%). TFA group was removed either by dissolving <u>3</u>, in dry methanol (5 min) with suspension of Amberlite-IRA-400(HCO_3^-) or by passing in acetone through a short alumina column (solvolytic cleavage of 1β -O-acyl group was thus minimized) yielding l-O-butyroyl-β-D-glucopyranose 4a (gum, 88%)[δ6.34(lH, d, J=7.7 Hz, C_1 -H], which was identified by converting to the tetraacetate.⁴⁾

i) TiBr₄ in boiling CF₃COOH ii) RCOOAg in dry benzene iii) MeOH, r.t. or alumina

Similarly, reaction of the bromide 2 with silver γ -hydroxy- α -methylenebutyrate in dry benzene for a week at room temp. yielded 3b as a gum (87%). TFA group was removed as described above, yielding $1-0-(\gamma-hydroxy-\alpha-methylene$ butyroyl)- β -D-glucopyranose (tuliposide-A) 4b (83%) as a gum, whose structure was identified by the following spectral data [IR(film): 3350, 1728, 1680, 1550, 970. ¹H-NMR(Py-d₅): δ 6.39(1H, d, J=7.6 Hz, C₁-H), 6.46 and 5.82(each 1H, s, CH₂=C=), 3.91-4.46(6H, C₂, 3, 4, 5, 6-H), 4.02(2H, t, J=6.6 Hz, -CH₂CH₂OH), 2.82 (2H, t, J=6.6 Hz, $-CH_2 CH_2 OH$). ¹³C-NMR(Py-d₅): δ 166.3(C=O), 138.2(CH₂=<u>C</u><), 127.8 $(CH_2=C<)$, 96.3(C₁), 79.4(C₅), 78.3(C₃), 74.0(C₂), 70.9(C₄), 62.0(C₆), 60.9 $(-CH_2CH_2OH)$, 36.0 $(-CH_2CH_2OH)$], and by converting to the pentaacetate.⁵⁾ The compound Ap was proved to be unstable on solvolysis; for example, in pyridine-d5 it completely decomposed to D-glucose and α -methylene- γ -butyrolactone when being kept for 30 h at room temp.

References

- a, R. ISCHESCHE, F. J. KAMMERER, and G. Wulff, <u>Tetrahedron Letters</u>, 1968, 771
 b) Idem, <u>Chem. Ber</u>., 104, 2057 (1969).
 2) G. Zemplen and A. Gerecs, <u>Ber</u>., 64, 1545 (1931).
 3) L. J. Carlson, <u>J. Org. Chem</u>., 30, 3953 (1965).
 4) Y. Nishikawa, K. Yoshimoto, G. Kurono, and K. Michishita, <u>Chem. Pharm. Bull</u>., 23, 597 (1975). 1) a) R. Tschesche, F. J. Kammerer, and G. Wulff, Tetrahedron Letters, 1968, 771.

- 5) C. R. Hutchinson, J. Org. Chem., 39, 1854 (1974).

(Received in Japan 19 March 1983)